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I. EXTENDED ABSTRACT

In this paper we present a possible extension of the theory of sampling signals with finite rate of innovation
(FRI) to the case of multichannel acquisition systems. Most of the papers on sparse sampling [3], [2], [6],
[4] focus on a single-channel acquisition model. However, modern and fast Analogue-to-Digital Converters
(ADC) use interleaved multichannel converters. This allows a reduction in the complexity of the devices
while keeping higher rates of conversion. Given the practical importance of multichannel acquisition devices,
it is natural to investigate extensions of sparse sampling theories to the multichannel scenario. The critical
issue in multichannel sampling (see Figure 1) is the precise synchronization of the various channels since
different devices introduce different drifts and different gains (due to imperfections of electronic circuits for
example) that need to be estimated together with the signal itself. We pose both the synchronization stage
and the signal reconstruction stage as a parametric estimation problem and demonstrate that a simultaneous
exact synchronization of the channels and reconstruction of the FRI signal is possible.

In this paper, we will focus on a specific class of kernels, used in [4], that are able to reproduce real or
complex exponentials. Our goal is to have a reconstruction system that can perfectly retrieve both the input
signal and the unknown delays and gains. By setting two parameters to be common between the exponents
of the ith channel, with ¢« = 2,3,..., M, with respect to the reference channel, the unknown gain and the
delay factor can be calculated. This reveals that, independently of x(¢), it is possible to synchronize the two
channels exactly from the samples y; ,. A multichannel acquisition system achieves perfect reconstruction
of FRI signals with a sampling rate proportional to 1/7'M. Thus, perfect reconstruction is achieved at lower
sampling rates.

We also show in our paper that a multichannel system (two and three channels in our case) is more resilient
to noise than a single channel one. Since for both single and multichannel set-ups, we have a standard
parametric estimation problem, we use Cramér-Rao bounds (CRB) to compare the minimum bounds of the
different set-ups. As the large number of unknown parameters leads to a fairly large Fisher information
matrices, it is simpler to evaluate the CRB numerically for all cases. The CRB for the estimation of the
a FRI signal consisting of 3 Diracs with known amplitudes for M = 1,2 and 3, with a fixed number of
samples N = 20, are shown in Figure 2(a). Interestingly, the results reveal that the CRB improves with
the number of channels. More precisely, the CRB improvement when going from single-channel to two
channels is approximately 0.86dB, while the improvement when going from single channel to three channel
system is approximately 1.1dB. It is interesting to see that, despite the fact that the unknown delays need
to be estimated in order to synchronize the channels, there is still a noticeable gain by using multichannel
sampling set-up when compared to the single channel sampling set-up. Furthermore, in Figure 2(b) we show
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Fig. 1.  Multichannel sampling set-up. Here, the continuous-time signal x(¢) is received by multiple channels with multiple
acquisition devices. The samples y; », from each channel are utilized jointly for the reconstruction process.
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Fig. 2. (a) CRB for single channel and multichannel sampling systems. The input SNR is calculated as 10loglo”g—‘2|2 where o

is the noise variance and At is the uncertainty on the estimated locations. (b) Theoretical uncertainties on the estimated locations
with varying sampling rates. (c) Numerical results with single and multichannel sampling. Dirac locations are set at 0.5, 0.6 and
0.7 set for all cases. For the sake of simplicity, the introduced channel gains are all set to be equal and known a-priori. The delays
Ao and Aj are fixed at % and T respectively.

the CRB of each sampling system at varying sampling rates. We can see that at a given uncertainty of the
estimated locations, there is a reduction in the number of samples needed when going from single-channel
to multichannel sampling systems. For example, at the reconstruction quality of % = 0.04, the number of
samples could be reduced from 38 samples to 27 samples when going from the single channel to the three
channel set-up.

To analyze the performance of the reconstruction algorithm, Figure 2(c) presents some actual numerical
results on the uncertainty of the estimated locations which are also compared against the theoretical bounds
from Figure 2(a). The locations of the Diracs are obtained using a variation of the annihilating filter method,
known as the matrix-pencil method [5] and also the Cadzow’s algorithm [1] to further denoise the surrogate
measurements s,,. While none of the algorithms achieve the CRB, the obtained results show that the gain
in performance with multichannel sampling over single channel sampling can be significant. For instance, at
input SNR= 15dB, the gain in performance from single channel to three channels is approximately 4.4dB.
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